Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.599
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612750

ABSTRACT

AP2/ERF transcription factor family plays an important role in plant development and stress responses. Previous studies have shed light on the evolutionary trajectory of the AP2 and DREB subfamilies. However, knowledge about the evolutionary history of the ERF subfamily in angiosperms still remains limited. In this study, we performed a comprehensive analysis of the ERF subfamily from 107 representative angiosperm species by combining phylogenomic and synteny network approaches. We observed that the expansion of the ERF subfamily was driven not only by whole-genome duplication (WGD) but also by tandem duplication (TD) and transposition duplication events. We also found multiple transposition events in Poaceae, Brassicaceae, Poales, Brassicales, and Commelinids. These events may have had notable impacts on copy number variation and subsequent functional divergence of the ERF subfamily. Moreover, we observed a number of ancient tandem duplications occurred in the ERF subfamily across angiosperms, e.g., in Subgroup IX, IXb originated from ancient tandem duplication events within IXa. These findings together provide novel insights into the evolution of this important transcription factor family.


Subject(s)
Brassicaceae , Magnoliopsida , Magnoliopsida/genetics , DNA Copy Number Variations , Poaceae , Transcription Factors/genetics
2.
Curr Biol ; 34(8): R308-R312, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653196

ABSTRACT

Flowering plants, also known as angiosperms, emerged approximately 150 to 200 million years ago. Since then, they have undergone rapid and extensive expansion, now encompassing around 90% of all land plant species. The remarkable diversification of this group has been a subject of in-depth investigations, and several evolutionary innovations have been proposed to account for their success. In this primer, we will specifically focus on one such innovation: the advent of seeds containing endosperm.


Subject(s)
Biological Evolution , Magnoliopsida , Reproduction , Magnoliopsida/physiology , Magnoliopsida/genetics , Reproduction/physiology , Endosperm/physiology , Seeds/physiology
3.
Planta ; 259(6): 134, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671234

ABSTRACT

MAIN CONCLUSION: Mfind is a tool to analyze the impact of microsatellite presence on DNA barcode specificity. We found a significant correlation between barcode entropy and microsatellite count in angiosperm. Genetic barcodes and microsatellites are some of the identification methods in taxonomy and biodiversity research. It is important to establish a relationship between microsatellite quantification and genetic information in barcodes. In order to clarify the association between the genetic information in barcodes (expressed as Shannon's Measure of Information, SMI) and microsatellites count, a total of 330,809 DNA barcodes from the BOLD database (Barcode of Life Data System) were analyzed. A parallel sliding-window algorithm was developed to compute the Shannon entropy of the barcodes, and this was compared with the quantification of microsatellites like (AT)n, (AC)n, and (AG)n. The microsatellite search method utilized an algorithm developed in the Java programming language, which systematically examined the genetic barcodes from an angiosperm database. For this purpose, a computational tool named Mfind was developed, and its search methodology is detailed. This comprehensive study revealed a broad overview of microsatellites within barcodes, unveiling an inverse correlation between the sumz of microsatellites count and barcodes information. The utilization of the Mfind tool demonstrated that the presence of microsatellites impacts the barcode information when considering entropy as a metric. This effect might be attributed to the concise length of DNA barcodes and the repetitive nature of microsatellites, resulting in a direct influence on the entropy of the barcodes.


Subject(s)
Algorithms , DNA Barcoding, Taxonomic , Magnoliopsida , Microsatellite Repeats , Microsatellite Repeats/genetics , DNA Barcoding, Taxonomic/methods , Magnoliopsida/genetics , DNA, Plant/genetics
4.
Ann Bot ; 133(2): 225-260, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597914

ABSTRACT

BACKGROUND: The Chloranthaceae comprise four extant genera (Hedyosmum, Ascarina, Chloranthus and Sarcandra), all with simple flowers. Molecular phylogenetics indicates that the Chloranthaceae diverged very early in angiosperm evolution, although how they are related to eudicots, magnoliids, monocots and Ceratophyllum is uncertain. Fossil pollen similar to that of Ascarina and Hedyosmum has long been recognized in the Early Cretaceous, but over the last four decades evidence of extinct Chloranthaceae based on other types of fossils has expanded dramatically and contributes significantly to understanding the evolution of the family. SCOPE: Studies of fossils from the Cretaceous, especially mesofossils of Early Cretaceous age from Portugal and eastern North America, recognized diverse flowers, fruits, seeds, staminate inflorescences and stamens of extinct chloranthoids. These early chloranthoids include forms related to extant Hedyosmum and also to the Ascarina, Chloranthus and Sarcandra clade. In the Late Cretaceous there are several occurrences of distinctive fossil androecia related to extant Chloranthus. The rich and still expanding Cretaceous record of Chloranthaceae contrasts with a very sparse Cenozoic record, emphasizing that the four extant genera are likely to be relictual, although speciation within the genera might have occurred in relatively recent times. In this study, we describe three new genera of Early Cretaceous chloranthoids and summarize current knowledge on the extinct diversity of the group. CONCLUSIONS: The evolutionary lineage that includes extant Chloranthaceae is diverse and abundantly represented in Early Cretaceous mesofossil floras that provide some of the earliest evidence of angiosperm reproductive structures. Extinct chloranthoids, some of which are clearly in the Chloranthaceae crown group, fill some of the morphological gaps that currently separate the extant genera, help to illuminate how some of the unusual features of extant Chloranthaceae evolved and suggest that Chloranthaceae are of disproportionate importance for a more refined understanding of ecology and phylogeny of early angiosperm diversification.


Subject(s)
Fruit , Magnoliopsida , Seeds , Ecology , Flowers , Fossils , Magnoliopsida/genetics
5.
BMC Biol ; 22(1): 97, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679718

ABSTRACT

BACKGROUND: The plastid is the photosynthetic organelle in plant cell, and the plastid genomes (plastomes) are generally conserved in evolution. As one of the most economically and ecologically important order of angiosperms, Poales was previously documented to exhibit great plastomic variation as an order of photoautotrophic plants. RESULTS: We acquired 93 plastomes, representing all the 16 families and 5 major clades of Poales to reveal the extent of their variation and evolutionary pattern. Extensive variation including the largest one in monocots with 225,293 bp in size, heterogeneous GC content, and a wide variety of gene duplication and loss were revealed. Moreover, rare occurrences of three inverted repeat (IR) copies in angiosperms and one IR loss were observed, accompanied by short IR (sIR) and small direct repeat (DR). Widespread structural heteroplasmy, diversified inversions, and unusual genomic rearrangements all appeared in Poales, occasionally within a single species. Extensive repeats in the plastomes were found to be positively correlated with the observed inversions and rearrangements. The variation all showed a "small-large-moderate" trend along the evolution of Poales, as well as for the sequence substitution rate. Finally, we found some positively selected genes, mainly in C4 lineages, while the closely related lineages of those experiencing gene loss tended to have undergone more relaxed purifying selection. CONCLUSIONS: The variation of plastomes in Poales may be related to its successful diversification into diverse habitats and multiple photosynthetic pathway transitions. Our order-scale analyses revealed unusual evolutionary scenarios for plastomes in the photoautotrophic order of Poales and provided new insights into the plastome evolution in angiosperms as a whole.


Subject(s)
Evolution, Molecular , Genome, Plastid , Genetic Variation , Magnoliopsida/genetics , Phylogeny , Biological Evolution
6.
Funct Plant Biol ; 512024 Apr.
Article in English | MEDLINE | ID: mdl-38687848

ABSTRACT

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.


Subject(s)
Flowers , Pollination , Flowers/genetics , Flowers/growth & development , Magnoliopsida/genetics , Magnoliopsida/physiology , Gene Expression Regulation, Plant , Pollen/genetics
7.
BMC Biol ; 22(1): 70, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519936

ABSTRACT

BACKGROUND: Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS: Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS: This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.


Subject(s)
Genome, Mitochondrial , Magnoliopsida , Mites , Animals , Phylogeny , Mites/genetics , Genes, Mitochondrial , Multigene Family , Magnoliopsida/genetics
8.
Am J Bot ; 111(3): e16300, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469876

ABSTRACT

PREMISE: Many plastomes of autotrophic Piperales have been reported to date, describing a variety of differences. Most studies focused only on a few species or a single genus, and extensive, comparative analyses have not been done. Here, we reviewed publicly available plastome reconstructions for autotrophic Piperales, reanalyzed publicly available raw data, and provided new sequence data for all previously missing genera. Comparative plastome genomics of >100 autotrophic Piperales were performed. METHODS: We performed de novo assemblies to reconstruct the plastomes of newly generated sequence data. We used Sanger sequencing and read mapping to verify the assemblies and to bridge assembly gaps. Furthermore, we reconstructed the phylogenetic relationships as a foundation for comparative plastome genomics. RESULTS: We identified a plethora of assembly and annotation issues in published plastome data, which, if unattended, will lead to an artificial increase of diversity. We were able to detect patterns of missing and incorrect feature annotation and determined that the inverted repeat (IR) boundaries were the major source for erroneous assembly. Accounting for the aforementioned issues, we discovered relatively stable junctions of the IRs and the small single-copy region (SSC), whereas the majority of plastome variations among Piperales stems from fluctuations of the boundaries of the IR and the large single-copy (LSC) region. CONCLUSIONS: This study of all available plastomes of autotrophic Piperales, expanded by new data for previously missing genera, highlights the IR-LSC junctions as a potential marker for discrimination of various taxonomic levels. Our data indicates a pseudogene-like status for cemA and ycf15 in various Piperales. Based on a review of published data, we conclude that incorrect IR-SSC boundary identification is the major source for erroneous plastome assembly. We propose a gold standard for assembly and annotation of high-quality plastomes based on de novo assembly methods and appropriate references for gene annotation.


Subject(s)
Magnoliopsida , Phylogeny , Magnoliopsida/genetics , Genomics
9.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542523

ABSTRACT

The transcription factor is an essential factor for regulating the responses of plants to external stimuli. The WRKY protein is a superfamily of plant transcription factors involved in response to various stresses (e.g., cold, heat, salt, drought, ions, pathogens, and insects). During angiosperm evolution, the number and function of WRKY transcription factors constantly change. After suffering from long-term environmental battering, plants of different evolutionary statuses ultimately retained different numbers of WRKY family members. The WRKY family of proteins is generally divided into three large categories of angiosperms, owing to their conserved domain and three-dimensional structures. The WRKY transcription factors mediate plant adaptation to various environments via participating in various biological pathways, such as ROS (reactive oxygen species) and hormone signaling pathways, further regulating plant enzyme systems, stomatal closure, and leaf shrinkage physiological responses. This article analyzed the evolution of the WRKY family in angiosperms and its functions in responding to various external environments, especially the function and evolution in Magnoliaceae plants. It helps to gain a deeper understanding of the evolution and functional diversity of the WRKY family and provides theoretical and experimental references for studying the molecular mechanisms of environmental stress.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , Magnoliopsida/metabolism , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism , Phylogeny , Gene Expression Regulation, Plant , Multigene Family
10.
Plant Physiol Biochem ; 208: 108463, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442625

ABSTRACT

Floral organ development is one of the most vital events in flowering plants and is closely related to ornamental properties. The proliferate flower (a new branch or flower occurring in the centre of a flower) in plants is an interesting type, while the specific molecular mechanism remains largely unknown. Osmanthus fragrans 'Tianxiang Taige' has two different flower morphologies: normal flower and proliferate flower. Phenotypic observation suggested that a normal flower was composed of calyx, petal, stamen and pistil (reduced to leaf-like carpel). While in proliferate flower, the leaf-like carpel continued to grow and was replaced by a new branch. Paraffin section indicated that the re-growth of leaf carpels might be the main reason for proliferate flower formation. Transcriptome sequencing of normal and proliferate flower was performed, and the expression levels of related genes were analysed. Among the differentially expressed genes, OfBFT-a and OfBFT-b had differential expression during the proliferate flower formation process. The expression patterns revealed that both OfBFT-a and OfBFT-b were highly accumulated in carpels, and were significantly downregulated during the proliferate flower development process. Subcellular localization indicated that OfBFT-a and OfBFT-b proteins were located in the nucleus. Functional studies in 'Tianxiang Taige' and Arabidopsis showed that OfBFT-a and OfBFT-b had important roles in floral organ development, especially the proliferate flower formation process by downregulating the accumulation of AG and SEP3 homologous genes. These results may shed new light on the study of proliferate flower formation and flower morphology breeding in flowering plants.


Subject(s)
Arabidopsis , Magnoliopsida , Gene Expression Regulation, Plant , Genes, Plant , Plant Breeding , Plants/genetics , Arabidopsis/genetics , Magnoliopsida/genetics , Flowers/genetics
11.
BMC Genom Data ; 25(1): 30, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491489

ABSTRACT

BACKGROUND: The suamc genus Rhus (sensu stricto) includes two subgenera, Lobadium (ca. 25 spp.) and Rhus (ca. 10 spp.). Their members, R. glabra and R. typhina (Rosanae: Sapindales: Anacardiaceae), are two economic important species. Chloroplast genome information is of great significance for the study of plant phylogeny and taxonomy. RESULTS: The three complete chloroplast genomes from two Rhus glabra and one R. typhina accessions were obtained with a total of each about 159k bp in length including a large single-copy region (LSC, about 88k bp), a small single-copy regions (SSC, about 19k bp) and a pair of inverted repeats regions (IRa/IRb, about 26k bp), to form a canonical quadripartite structure. Each genome contained 88 protein-coding genes, 37 transfer RNA genes, eight ribosomal RNA genes and two pseudogenes. The overall GC content of the three genomes all were same (37.8%), and RSCU values showed that they all had the same codon prefers, i.e., to use codon ended with A/U (93%) except termination codon. Three variable hotspots, i.e., ycf4-cemA, ndhF-rpl32-trnL and ccsA-ndhD, and a total of 152-156 simple sequence repeats (SSR) were identified. The nonsynonymous (Ka)/synonymous (Ks) ratio was calculated, and cemA and ycf2 genes are important indicators of gene evolution. The phylogenetic analyses of the family Anacardiaceae showed that the eight genera were grouped into three clusters, and supported the monophyly of the subfamilies and all the genera. The accessions of five Rhus species formed four clusters, while, one individual of R. typhina grouped with the R. glabra accessions instead of clustering into the two other individuals of R. typhina in the subgenus Rhus, which showed a paraphyletic relationship. CONCLUSIONS: Comparing the complete chloroplast genomes of the Rhus species, it was found that most SSRs were A/T rich and located in the intergenic spacer, and the nucleotide divergence exhibited higher levels in the non-coding region than in the coding region. The Ka/Ks ratio of cemA gene was > 1 for species collected in America, while it was < 1 for other species in China, which dedicated that the Rhus species from North America and East Asia have different evolutionary pressure. The phylogenetic analysis of the complete chloroplast genome clarified the Rhus placement and relationship. The results obtained in this study are expected to provide valuable genetic resources to perform species identification, molecular breeding, and intraspecific diversity of the Rhus species.


Subject(s)
Anacardiaceae , Genome, Chloroplast , Magnoliopsida , Rhus , Humans , Phylogeny , Rhus/genetics , Anacardiaceae/genetics , Magnoliopsida/genetics , Codon/genetics
12.
New Phytol ; 242(3): 1377-1393, 2024 May.
Article in English | MEDLINE | ID: mdl-38436132

ABSTRACT

Increasing studies suggest that the biased retention of stress-related transcription factors (TFs) after whole-genome duplications (WGDs) could rewire gene transcriptional networks, facilitating plant adaptation to challenging environments. However, the role of posttranscriptional factors (e.g. RNA-binding proteins, RBPs) following WGDs has been largely ignored. Uncovering thousands of RBPs in 21 representative angiosperm species, we integrate genomic, transcriptomic, regulatomic, and paleotemperature datasets to unravel their evolutionary trajectories and roles in adapting to challenging environments. We reveal functional enrichments of RBP genes in stress responses and identify their convergent retention across diverse angiosperms from independent WGDs, coinciding with global cooling periods. Numerous RBP duplicates derived from WGDs are then identified as cold-induced. A significant overlap of 29 orthogroups between WGD-derived and cold-induced RBP genes across diverse angiosperms highlights a correlation between WGD and cold stress. Notably, we unveil an orthogroup (Glycine-rich RNA-binding Proteins 7/8, GRP7/8) and relevant TF duplicates (CCA1/LHY, RVE4/8, CBF2/4, etc.), co-retained in different angiosperms post-WGDs. Finally, we illustrate their roles in rewiring circadian and cold-regulatory networks at both transcriptional and posttranscriptional levels during global cooling. Altogether, we underline the adaptive evolution of RBPs in angiosperms after WGDs during global cooling, improving our understanding of plants surviving periods of environmental turmoil.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , Phylogeny , Evolution, Molecular , Genome, Plant , Gene Duplication , Plants/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
13.
New Phytol ; 242(5): 1981-1995, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511237

ABSTRACT

Understanding the capacity of temperate trees to acclimate to limited soil water has become essential in the face of increasing drought risk due to climate change. We documented seasonal - or phenological - patterns in acclimation to water deficit stress in stems and leaves of tree species spanning the angiosperm phylogeny. Over 3 yr of field observations carried out in two US arboreta, we measured stem vulnerability to embolism (36 individuals of 7 Species) and turgor loss point (119 individuals of 27 species) over the growing season. We also conducted a growth chamber experiment on 20 individuals of one species to assess the mechanistic relationship between soil water restriction and acclimation. In three-quarters of species measured, plants became less vulnerable to embolism and/or loss of turgor over the growing season. We were able to stimulate this acclimatory effect by withholding water in the growth chamber experiment. Temperate angiosperms are capable of acclimation to soil water deficit stress, showing maximum vulnerability to soil water deficits following budbreak and becoming more resilient to damage over the course of the growing season or in response to simulated drought. The species-specific tempo and extent of this acclimatory potential constitutes preadaptive climate change resilience.


Subject(s)
Acclimatization , Droughts , Magnoliopsida , Phylogeny , Seasons , Stress, Physiological , Water , Magnoliopsida/physiology , Magnoliopsida/genetics , Magnoliopsida/growth & development , Acclimatization/genetics , Wood/physiology , Species Specificity , Plant Stems/physiology , Plant Stems/growth & development , Plant Leaves/physiology , Dehydration , Soil , Trees/physiology
14.
Ann Bot ; 133(5-6): 833-850, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38401154

ABSTRACT

BACKGROUND AND AIMS: The quartz fields of the Greater Cape Floristic Region (GCFR) are arid and island-like special habitats, hosting ~142 habitat-specialized plant species, of which 81 % are local endemics, characterized by a rapid turnover of species between and among sites. We use several phylogenetic community metrics: (1) to examine species diversity and phylogenetic structure within and among quartz fields; (2) to investigate whether quartz field specialists are evolutionarily drawn from local species pools, whereas the alternative hypothesis posits that there is no significant evolutionary connection between quartz field specialists and the local species pools; and (3) to determine whether there is an association between certain traits and the presence of species in quartz fields. METHODS: We sampled and developed dated phylogenies for six species-rich angiosperm families (Aizoaceae, Asteraceae, Crassulaceae, Cyperaceae, Fabaceae and Santalaceae) represented in the quartz field floras of southern Africa. Specifically, we focused on the flora of three quartz field regions in South Africa (Knersvlakte, Little Karoo and Overberg) and their surrounding species pools to address our research questions by scoring traits associated with harsh environments. KEY RESULTS: We found that the Overberg and Little Karoo had the highest level of species overlap for families Aizoaceae and Fabaceae, whereas the Knersvlakte and the Overberg had the highest species overlap for families Asteraceae, Crassulaceae and Santalaceae. Although our phylogenetic community structure and trait analyses showed no clear patterns, relatively low pairwise phylogenetic distances between specialists and their local species pools for Aizoaceae suggest that quartz species could be drawn evolutionarily from their surrounding areas. We also found that families Aizoaceae and Crassulaceae in Knersvlakte and Little Karoo were phylogenetically even. CONCLUSIONS: Despite their proximity to one another within the GCFR, the studied areas differ in their species pools and the phylogenetic structure of their specialists. Our work provides further justification for increased conservation focus on these unique habitats under future scenarios of global change.


Subject(s)
Ecosystem , Magnoliopsida , Phylogeny , South Africa , Magnoliopsida/genetics , Biodiversity , Islands
15.
Elife ; 122024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353667

ABSTRACT

Sex-biased genes offer insights into the evolution of sexual dimorphism. Sex-biased genes, especially those with male bias, show elevated evolutionary rates of protein sequences driven by positive selection and relaxed purifying selection in animals. Although rapid sequence evolution of sex-biased genes and evolutionary forces have been investigated in animals and brown algae, less is known about evolutionary forces in dioecious angiosperms. In this study, we separately compared the expression of sex-biased genes between female and male floral buds and between female and male flowers at anthesis in dioecious Trichosanthes pilosa (Cucurbitaceae). In floral buds, sex-biased gene expression was pervasive, and had significantly different roles in sexual dimorphism such as physiology. We observed higher rates of sequence evolution for male-biased genes in floral buds compared to female-biased and unbiased genes. Male-biased genes under positive selection were mainly associated with functions to abiotic stress and immune responses, suggesting that high evolutionary rates are driven by adaptive evolution. Additionally, relaxed purifying selection may contribute to accelerated evolution in male-biased genes generated by gene duplication. Our findings, for the first time in angiosperms, suggest evident rapid evolution of male-biased genes, advance our understanding of the patterns and forces driving the evolution of sexual dimorphism in dioecious plants.


Subject(s)
Magnoliopsida , Animals , Magnoliopsida/genetics , Amino Acid Sequence , Flowers/genetics , Gene Duplication , Sex Characteristics
16.
Proc Natl Acad Sci U S A ; 121(8): e2319696121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346181

ABSTRACT

The phylogeny and divergence timing of the Neoavian radiation remain controversial despite recent progress. We analyzed the genomes of 124 species across all Neoavian orders, using data from 25,460 loci spanning four DNA classes, including 5,756 coding sequences, 12,449 conserved nonexonic elements, 4,871 introns, and 2,384 intergenic segments. We conducted a comprehensive sensitivity analysis to account for the heterogeneity across different DNA classes, leading to an optimal tree of Neoaves with high resolution. This phylogeny features a novel Neoavian dichotomy comprising two monophyletic clades: a previously recognized Telluraves (land birds) and a newly circumscribed Aquaterraves (waterbirds and relatives). Molecular dating analyses with 20 fossil calibrations indicate that the diversification of modern birds began in the Late Cretaceous and underwent a constant and steady radiation across the KPg boundary, concurrent with the rise of angiosperms as well as other major Cenozoic animal groups including placental and multituberculate mammals. The KPg catastrophe had a limited impact on avian evolution compared to the Paleocene-Eocene Thermal Maximum, which triggered a rapid diversification of seabirds. Our findings suggest that the evolution of modern birds followed a slow process of gradualism rather than a rapid process of punctuated equilibrium, with limited interruption by the KPg catastrophe. This study places bird evolution into a new context within vertebrates, with ramifications for the evolution of the Earth's biota.


Subject(s)
Fossils , Magnoliopsida , Pregnancy , Female , Animals , Magnoliopsida/genetics , Placenta , Phylogeny , Birds/genetics , Mammals/genetics , DNA, Mitochondrial/genetics , Biological Evolution
17.
Mol Ecol Resour ; 24(4): e13937, 2024 May.
Article in English | MEDLINE | ID: mdl-38363053

ABSTRACT

As the scope of plant eDNA metabarcoding diversifies, so do the primers, markers and methods. A wealth of primers exists today, but their comparative evaluation is lacking behind. Similarly, multi-marker approaches are recommended but debates persist regarding barcode complementarity and optimal combinations. After a literature compilation of used primers, we compared in silico 102 primer pairs based on amplicon size, coverage and specificity, followed by an experimental evaluation of 15 primer pairs on a mock community sample covering 268 plant species and genera, and about 100 families. The analysis was done for the four most common plant metabarcoding markers, rbcL, trnL, ITS1 and ITS2 and their complementarity was assessed based on retrieved species. By focusing on existing primers, we identify common designs, promote alternatives and enhance prior-supported primers for immediate applications. The ITS2 was the best-performing marker for flowering vascular plants and was congruent to ITS1. However, the combined taxonomic breadth of ITS2 and rbcL surpassed any other combination, highlighting their high complementarity across Streptophyta. Overall, our study underscores the significance of comprehensive primer and barcode evaluations tailored to metabarcoding applications.


Subject(s)
DNA, Environmental , Magnoliopsida , Humans , DNA Barcoding, Taxonomic/methods , DNA, Ribosomal Spacer/genetics , Plants/genetics , Magnoliopsida/genetics
18.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397102

ABSTRACT

The GRAS (GAI\RGA\SCL) gene family encodes plant-specific transcription factors that play crucial roles in plant growth and development, stress tolerance, and hormone network regulation. Plant dwarfing symptom is mainly regulated by DELLA proteins of the GRAS gene subfamily. In this study, the association between the GRAS gene family and Paulownia witches' broom (PaWB) was investigated. A total of 79 PfGRAS genes were identified using bioinformatics methods and categorized into 11 groups based on amino acid sequences. Tandem duplication and fragment duplication were found to be the main modes of amplification of the PfGRAS gene family. Gene structure analysis showed that more than 72.1% of the PfGRASs had no introns. The genes PfGRAS12/18/58 also contained unique DELLA structural domains; only PfGRAS12, which showed significant response to PaWB phytoplasma infection in stems, showed significant tissue specificity and responded to gibberellin (GA3) in PaWB-infected plants. We found that the internodes were significantly elongated under 100 µmol·L-1 GA3 treatment for 30 days. The subcellular localization analysis indicated that PfGRAS12 is located in the nucleus and cell membrane. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays confirmed that PfGRAS12 interacted with PfJAZ3 in the nucleus. Our results will lay a foundation for further research on the functions of the PfGRAS gene family and for genetic improvement and breeding of PaWB-resistant trees.


Subject(s)
Cytisus , Lamiales , Magnoliopsida , Phytoplasma , Magnoliopsida/genetics , Plant Diseases/genetics , Phytoplasma/genetics , Plant Breeding , Lamiales/genetics
19.
Plant Cell ; 36(5): 1186-1204, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38382084

ABSTRACT

The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes-both in content and in dynamics-has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.


Subject(s)
Genome, Plant , Magnoliopsida , Genome, Plant/genetics , Magnoliopsida/genetics , Polyploidy , Evolution, Molecular , Gene Expression Regulation, Plant , Genomics/methods , Genetic Variation
20.
Nat Commun ; 15(1): 1079, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316752

ABSTRACT

The tendency of species to retain ancestral ecological distributions (phylogenetic niche conservatism) is thought to influence which species from a species pool can persist in a particular environment. Thus, investigating the relationships between measures of phylogenetic structure and environmental variables at a global scale can help understand the variation in species richness and phylogenetic structure in biological assemblages across the world. Here, we analyze a comprehensive data set including 341,846 species in 391 angiosperm floras worldwide to explore the relationships between measures of phylogenetic structure and environmental variables for angiosperms in regional floras across the world and for each of individual continental (biogeographic) regions. We find that the global phylogenetic structure of angiosperms shows clear and meaningful relationships with environmental factors. Current climatic variables have the highest predictive power, especially on phylogenetic metrics reflecting recent evolutionary relationships that are also related to current environmental heterogeneity, presumably because this favors plant speciation in various ways. We also find evidence that past climatic conditions, and particularly refugial conditions, play an important role in determining the phylogenetic structure of regional floras. The relationships between environmental conditions and phylogenetic metrics differ between continents, reflecting the different evolutionary histories of their floras.


Subject(s)
Magnoliopsida , Phylogeny , Magnoliopsida/genetics , Biological Evolution , Plants , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...